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superalgebrasl(r + 1|s+ 1)

Zengo Tsuboi
Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1
Komaba, Meguro-ku, Tokyo 153, Japan

Received 22 May 1997

Abstract. From the point of view of the Young superdiagram method, an analytic Bethe
ansatz is carried out for Lie super algebrasl(r + 1|s + 1). For the transfer matrix eigenvalue
formulae in dressed-vacuum form, we present some expressions, which are quantum analogues
of Jacobi–Trudi and Giambelli formulae for Lie superalgebrasl(r + 1|s + 1). We also propose
transfer-matrix functional relations, which are Hirota bilinear difference equations with some
constraints.

1. Introduction

In [KNS1], a class of functional relations, theT -system, was proposed. It is a family
of functional relations for a set of commuting transfer matrices of solvable lattice models
associated with any quantum affine algebrasUq(G(1)r ). Using theT -system, we can calculate
various physical quantities [KNS2] such as the correlation lengths of the vertex models and
central charges of RSOS models. TheT -system is not only a family of transfer-matrix
functional relations but also a two-dimensional Toda field equation on discrete spacetime.
And it has beautiful pfaffian and determinant solutions [KOS, KNH, TK] (see also [T]).

In [KS1], an analytic Bethe ansatz [R1] was carried out for fundamental representations
of the YangiansY (G)[D], where G = Br , Cr andDr . That is, eigenvalue formulae in
dressed-vacuum form were proposed for the transfer matrices of solvable vertex models.
These formulae are Yangian analogues of the Young tableau forG and satisfy certain semi-
standard-like conditions. It had been proven that they are free of poles under the Bethe
ansatz equation. Furthermore, for theG = Br case, these formulae were extended to the
case of finite dimensional modules labelled by skew Young diagramsλ ⊂ µ [KOS]. In an
analytic Bethe ansatz context, the above-mentioned solutions of theT -system correspond
to the eigenvalue formulae of the transfer matrices in dressed-vacuum form labelled by
rectangular Young diagramsλ = φ,µ = (ma) (see also [BR, KLWZ, K, KS2, S2]).

The purpose of this paper is to extend similar analyses to the Lie superalgebra
G = sl(r + 1|s + 1) [Ka] case (see also [C] for a comprehensible account on Lie
superalgebras). Throughout this paper, we frequently use similar notation to that presented
in [KS1, KOS, TK]. Studying supersymmetric integrable models is important not only in
mathematical physics but also in condensed matter physics (cf [EK, FK, KE, S1, ZB]). For
example, the supersymmetrict−J model received much attention in connection with highTc
superconductivity. In the supersymmetric models, theR-matrix satisfies the graded Yang–
Baxter equation [KulSk]. The transfer matrix is defined as asuper trace of the monodromy
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matrix. As a result, extra signs appear in the Bethe ansatz equation and eigenvalue formula
of the transfer matrix.

There are several unequivalent choices of simple root system for Lie superalgebra. We
treat the so-called distinguished simple root system [Ka] in the main text. We introduce the
Young superdiagram [BB1], which is associated with a covariant tensor representation. To
be precise, this Young superdiagram is different from the classical one in that it carries a
spectral parameteru. In contrast to the ordinary Young diagram, there is no restriction on
the number of rows. We define a semi-standard-like tableau on it. Using this tableau, we
introduce the functionTλ⊂µ(u) (2.15). This should be a fusion transfer matrix of dressed-
vacuum form in the analytic Bethe ansatz. We prove the pole-freeness ofT a(u) = T(1a)(u),
a crucial property of the analytic Bethe ansatz. Due to the same mechanism presented in
[KOS], the functionTλ⊂µ(u) has a determinant expression whose matrix elements are only
the functions associated with Young superdiagrams with shapeλ = φ; µ = (m) or (1a).
It can be viewed as a quantum analogue of Jacobi–Trudi and Giambelli formulae for Lie
superalgebrasl(r + 1|s + 1). Then one can easily show that the functionTλ⊂µ(u) is free
of poles under the Bethe ansatz equation (2.6a). Among the above-mentioned eigenvalue
formulae of transfer matrix in dressed-vacuum form associated with rectangular Young
superdiagrams, we present a class of transfer-matrix functional relations. It is a special case
of Hirota bilinear difference equation [H].

Deguchi and Martin [DM] discussed the spectrum of the fusion model from the point
of view of representation theory (see also, [MR]). This present paper will partially give us
an elemental account of their result from the point of view of the analytic Bethe ansatz.

The outline of this paper is as follows. In section 2, we execute an analytic Bethe ansatz
based upon the Bethe ansatz equation (2.6a) associated with the distinguished simple roots.
The observation that the Bethe ansatz equation can be expressed by a root system of Lie
algebra is traced back to [RW] (see also, [Kul] for thesl(r+1|s+1) case). Moreover, Kuniba
et al [KOS] conjectured that the left-hand side of the Bethe ansatz equation (2.6a) can be
written as a ratio of certain ‘Drinfeld polynomials’ [D]. We introduce the functionTλ⊂µ(u),
which should be the transfer matrix whose auxiliary space is a finite-dimensional module of
super YangianY (sl(r + 1|s+ 1)) [N] or quantum affine superalgebraUq(sl(r + 1|s+ 1)(1))
[Y], labelled by a skew Young superdiagramλ ⊂ µ. The origin of the functionT 1(u)

goes back to the eigenvalue formula of the transfer matrix of the Perk–Schultz model
[PS1, PS2, Sc], which is a multicomponent generalization of the six-vertex model (see also
[Kul]). In addition, the functionT 1(u) reduces to the eigenvalue formula of the transfer
matrix derived by the algebraic Bethe ansatz (for example, the [FK]:r = 1, s = 0 case;
[EK]: r = 0, s = 1 case; [EKS1, EKS2]:r = s = 1 case). In section 3, we propose
functional relations, theT -system, associated with the transfer matrices in dressed-vacuum
form defined in the previous section. Section 4 is devoted to a summary and discussion. In
appendix A, we briefly mention the relation between the fundamentalL operator and transfer
matrix. In this paper, we treat mainly the expressions related to covariant representations.
For contravariant ones, we present several expressions in appendix B. Appendices C and D
provide some expressions related to non-distinguished simple roots ofsl(1|2). Appendix E
explains how to represent the eigenvalue formulae of transfer matrices in dressed-vacuum
form Tm(u) andT a(u) in terms of the functionsAm(u), Aa(u), Bm(u) andBa(u), which
are analogous to the fusion transfer matrices ofUq(G(1)) vertex models (G = slr+1, sls+1).
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Figure 1. Dynkin diagram for the Lie superalgebrasl(r + 1|s + 1) corresponding to the
distinguished simple roots: open circles denote even rootsαi ; crossed circles denote odd roots
αj with (αj |αj ) = 0.

2. Analytic Bethe ansatz

Lie superalgebra [Ka] is aZ2 graded algebraG = G0̄ ⊕ G1̄ with a product [, ], whose
homogeneous elementsa ∈ Gα, b ∈ Gβ (α, β ∈ Z2 = {0̄, 1̄}) andc ∈ G satisfy the following
relations.

[a, b] ∈ Gα+β
[a, b] = −(−1)αβ [b, a] (2.1)

[a, [b, c]] = [[a, b], c] + (−1)αβ [b, [a, c]] .

The set of non-zero roots can be divided into the set of non-zero even roots (bosonic roots)
1′0 and the set of odd roots (fermionic roots)11. For thesl(r + 1|s + 1) case, they read

1′0 = {εi − εj } ∪ {δi − δj }i 6= j 11 = {±(εi − δj )} (2.2)

whereε1, . . . , εr+1; δ1, . . . , δs+1 are basis of dual space of the Cartan subalgebra with the
bilinear form( | ) such that

(εi |εj ) = δi j , (εi |δj ) = (δi |εj ) = 0, (δi |δj ) = −δi j . (2.3)

There are several choices of simple root systems reflecting choices of Borel subalgebra.
The simplest system of simple roots is the so-called distinguished one [Ka] (see figure 1).
Let {α1, . . . , αr+s+1} be the distinguished simple roots of Lie superalgebrasl(r + 1|s + 1)

αi = εi − εi+1 i = 1, 2, . . . , r

αr+1 = εr+1− δ1 (2.4)

αj+r+1 = δj − δj+1 j = 1, 2, . . . , s

and with the grading

deg(αa) =
{

0 for even root

1 for odd root.
(2.5)

Especially for the distinguished simple root, we have deg(αa) = δa,r+1.
We consider the following type of the Bethe ansatz equation (cf [Kul, RW, KOS]).

−
Pa(u

(a)
k + 1

ta
)

Pa(u
(a)
k − 1

ta
)
= (−1)deg(αa)

r+s+1∏
b=1

Qb(u
(a)
k + (αa|αb))

Qb(u
(a)
k − (αa|αb))

(2.6a)

Qa(u) =
Na∏
j=1

[u− u(a)j ] (2.6b)

Pa(u) =
N∏
j=1

P (j)a (u) (2.6c)

P (j)a (u) = [u− wj ]δa,1 (2.6d)

where [u] = (qu − q−u)/(q − q−1); Na ∈ Z>0; u,wj ∈ C; a, k ∈ Z (1 6 a 6 r + s + 1,
16 k 6 Na); ta = 1 for 16 a 6 r+1, ta = −1 for r+26 a 6 r+s+1. In this paper, we
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suppose thatq is generic. The left-hand side of the Bethe ansatz equation (2.6a) is related to
the quantum space. We suppose that it is given by the ratio of some ‘Drinfeld polynomials’
labelled by skew Young diagrams̃λ ⊂ µ̃ (cf [KOS]). For simplicity, we consider only the
caseλ̃ = φ, µ̃ = (1). The generalization to the case for any skew Young diagram will
be achieved by the empirical procedures mentioned in [KOS]. The factor(−1)deg(αa) of the
Bethe ansatz equation (2.6a) appears so as to make the transfer matrix to be asuper trace
of the monodromy matrix. We define the sets

J = {1, 2, . . . , r + s + 2} J+ = {1, 2, . . . , r + 1}
J− = {r + 2, r + 3, . . . , r + s + 2} (2.7)

with the total order

1≺ 2≺ · · · ≺ r + s + 2 (2.8)

and with the grading

p(a) =
{

0 a ∈ J+
1 for a ∈ J−.

(2.9)

For a ∈ J , set

z(a; u) = ψa(u)Qa−1(u+ a + 1)Qa(u+ a − 2)

Qa−1(u+ a − 1)Qa(u+ a) for a ∈ J+

z(a; u) = ψa(u)Qa−1(u+ 2r − a + 1)Qa(u+ 2r − a + 4)

Qa−1(u+ 2r − a + 3)Qa(u+ 2r − a + 2)
for a ∈ J− (2.10)

whereQ0(u) = 1,Qr+s+2(u) = 1 and

ψa(u) =
{
P1(u+ 2) for a = 1

P1(u) for a ∈ J − {1}. (2.11)

In this paper, we often express the functionz(a; u) as the boxa
u
, whose spectral parameter

u will often be abbreviated. Under the Bethe ansatz equation, we have

Res
u=−b+u(b)k (z(b; u)+ z(b + 1; u)) = 0 16 b 6 r (2.12a)

Res
u=−r−1+u(r+1)

k
(z(r + 1; u)− z(r + 2; u)) = 0 (2.12b)

Res
u=−2r−2+b+u(b)k (z(b; u)+ z(b + 1; u)) = 0 r + 26 b 6 r + s + 1. (2.12c)

We will use the functionsT a(u) and Tm(u) (a ∈ Z; m ∈ Z; u ∈ C) determined by the
following generating series

(1+ z(r + s + 2; u)X)−1 · · · (1+ z(r + 2; u)X)−1(1+ z(r + 1; u)X) · · · (1+ z(1; u)X)
=

∞∑
a=−∞

Fa(u+ a − 1)T a(u+ a − 1)Xa (2.13a)

Fa(u) =



a−1∏
j=1

P1(u− 2j + a − 1) for a > 2

1 for a = 1

1

P1(u− 1)
for a = 0

0 for a 6 −1

(2.13b)

(1− z(1; u)X)−1 · · · (1− z(r + 1; u)X)−1(1− z(r + 2; u)X) · · · (1− z(r + s + 2; u)X)
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Figure 2. Young superdiagram with shapeλ ⊂ µ:
λ = (2, 2, 1, 0, 0), µ = (5, 5, 4, 2, 1).

Figure 3. Young superdiagram with shapeλ′ ⊂ µ′:
λ′ = (3, 2, 0, 0, 0), µ′ = (5, 4, 3, 3, 2).

=
∞∑

m=−∞
Tm(u+m− 1)Xm (2.13c)

whereX is a shift operatorX = e2∂u . In particular, we haveT 0(u) = P1(u−1); T0(u) = 1;
T a(u) = 0 for a < 0; Tm(u) = 0 for m < 0.

We remark that the origin of the functionT 1(u) and the Bethe ansatz equation (2.6a)
traces back to the eigenvalue formula of the transfer matrix and the Bethe ansatz equation
of the Perk–Schultz model [Sc] except the vacuum part, some gauge factors and extra signs
after some redefinition. (See also [Kul]).

Let λ ⊂ µ be a skew Young superdiagram labelled by the sequences of non-negative
integersλ = (λ1, λ2, . . .) andµ = (µ1, µ2, . . .) such thatµi > λi : i = 1, 2, . . . ; λ1 > λ2 >
· · · > 0; µ1 > µ2 > · · · > 0 andλ′ = (λ′1, λ′2, . . .) be the conjugate ofλ (see figures 2 and
3). On this skew Young superdiagramλ ⊂ µ, we assign coordinates(i, j) ∈ Z2 such that the
row indexi increases as we go downwards and the column indexj increases as we go from
left to right and that(1, 1) is on the top left corner ofµ. We define an admissible tableau
b on the skew Young superdiagramλ ⊂ µ as a set of elementsb(i, j) ∈ J labelled by the
coordinates(i, j) mentioned above, obeying the following rule (admissibility conditions).

(i) For any elements ofJ+,

b(i, j) � b(i, j + 1) b(i, j) ≺ b(i + 1, j) (2.14a)

(ii) for any elements ofJ−,

b(i, j) ≺ b(i, j + 1) b(i, j) � b(i + 1, j) (2.14b)

(iii) and for any elements ofJ ,

b(i, j) � b(i, j + 1) b(i, j) � b(i + 1, j). (2.14c)

Let B(λ ⊂ µ) be the set of admissible tableau onλ ⊂ µ.
For any skew-Young superdiagramλ ⊂ µ, define the functionTλ⊂µ(u) as follows

Tλ⊂µ(u) = 1

Fλ⊂µ(u)
∑

b∈B(λ⊂µ)

∏
(i,j)∈(λ⊂µ)

(−1)p(b(i,j))z(b(i, j); u− µ1+ µ′1− 2i + 2j)

(2.15)

where the product is taken over the coordinates(i, j) on λ ⊂ µ and

Fλ⊂µ(u) =
µ1∏
j=1

Fµ′j−λ′j (u+ µ′1− µ1− µ′j − λ′j + 2j − 1). (2.16)

In particular, for an empty diagramφ, setTφ(u) = Fφ(u) = 1. The following relations
should be valid for the same reason mentioned in [KOS], that is, they will be verified by
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induction onµ1 or µ′1.

Tλ⊂µ(u) = det
16i,j6µ1

(T µ′i−λ′j−i+j (u− µ1+ µ′1− µ′i − λ′j + i + j − 1)) (2.17a)

= det
16i,j6µ′1

(Tµj−λi+i−j (u− µ1+ µ′1+ µj + λi − i − j + 1)). (2.17b)

For example, for theλ = φ,µ = (22), r = 1, s = 0 case, we have

T(22)(u) =
1

F(22)(u)

(
1 1
2 2

− 1 1
2 3

− 1 2
2 3

+ 1 3
2 3

)
= P1(u+ 2)P1(u+ 4)

Q2(u− 2)

Q2(u+ 2)
− P1(u+ 2)P1(u+ 4)

Q1(u+ 1)Q2(u− 2)

Q1(u+ 3)Q2(u+ 2)

−P1(u+ 2)2
Q1(u+ 5)Q2(u− 2)

Q1(u+ 3)Q2(u+ 4)
+ P1(u+ 2)2

Q2(u− 2)

Q2(u+ 4)

=
∣∣∣∣ T 2(u− 1) T 3(u)

T 1(u) T 2(u+ 1)

∣∣∣∣ (2.18)

where

T 1(u) = 1 + 2 − 3

= P1(u+ 2)
Q1(u− 1)

Q1(u+ 1)
+ P1(u)

Q1(u+ 3)Q2(u)

Q1(u+ 1)Q2(u+ 2)
− P1(u)

Q2(u)

Q2(u+ 2)
(2.19)

T 2(u) = 1

F2(u)

(
1
2
− 1

3
− 2

3
+ 3

3

)
= P1(u+ 3)

Q2(u− 1)

Q2(u+ 1)
− P1(u+ 3)

Q1(u)Q2(u− 1)

Q1(u+ 2)Q2(u+ 1)

−P1(u+ 1)
Q1(u+ 4)Q2(u− 1)

Q1(u+ 2)Q2(u+ 3)
+ P1(u+ 1)

Q2(u− 1)

Q2(u+ 3)
(2.20)

T 3(u) = 1

F3(u)

− 1
2
3
+

1
3
3
+

2
3
3
−

3
3
3


= − P1(u+ 4)

Q2(u− 2)

Q2(u+ 2)
+ P1(u+ 4)

Q1(u+ 1)Q2(u− 2)

Q1(u+ 3)Q2(u+ 2)

+P1(u+ 2)
Q1(u+ 5)Q2(u− 2)

Q1(u+ 3)Q2(u+ 4)
− P1(u+ 2)

Q2(u− 2)

Q2(u+ 4)
. (2.21)

Remark 1.If we drop theu dependence of (2.17a) and (2.17b), they reduce to classical
Jacobi–Trudi and Giambelli formulae forsl(r+1|s+1) [BB1, PT], which bring us classical
(super) characters.

Remark 2.In the caseλ = φ ands = −1, (2.17a) and (2.17b) correspond to the quantum
analogue of Jacobi–Trudi and Giambelli formulae forslr+1 [BR].

Remark 3.Equations(2.17a) and(2.17b) have the same form as the quantum Jacobi–Trudi
and Giambelli formulae forUq(B(1)n ) in [KOS], but the functionT a(u) is quite different.

The following theorem is essential in analytic Bethe ansatz, which can be proved along
the similar line of the proof of [KS1, theorem 3.3.1].

Theorem 2.1.For any integera, the functionT a(u) is free of poles under the condition that
the Bethe ansatz equation (2.6a) is valid.
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At first, we present a lemma which is necessary for the proof of theorem 2.1. Lemma 2.2
is a sl(r + 1|s + 1) version of [KS1, lemma 3.3.2] and follows straightforwardly from the
definitions ofz(a; u) (2.10).

Lemma 2.2.For anyb ∈ J+ − {r + 1}, the function

b u

b + 1 u−2
(2.22)

does not contain the functionQb (2.6b).

Proof of theorem 2.1. For simplicity, we assume that the vacuum parts are formally
trivial, that is, the left-hand side of the Bethe ansatz equation (2.6a) is constantly−1.
We prove thatT a(u) is free of the colourb pole, namely, Res

u=u(b)k +··· T
a(u) = 0 for any

b ∈ J − {r + s + 2} under the condition that the Bethe ansatz equation (2.6a) is valid. The
function z(c; u) = c

u
with c ∈ J has the colourb pole only for c = b or b + 1, so we

shall trace onlyb or b + 1 . DenoteSk the partial sum ofT a(u), which containsk boxes

among b or b + 1 . Apparently,S0 does not have a colourb pole. This is also the case
with S2 for b ∈ J+ − {r + 1} since the admissible tableau have the same subdiagrams as
in (2.22) and thus do not involveQb by lemma 2.2. Now we examineS1 which is the
summation of the tableau of the form

ξ

b

ζ

ξ

b + 1
ζ

(2.23)

where ξ and ζ are columns with total lengtha − 1 and do not involveb and b + 1 .
Thanks to relations (2.12a)–(2.12c), colour b residues in these tableau (2.23) cancel each
other under the Bethe ansatz equation (2.6a). We deal withSk only for 3 6 k 6 a and
k = 2 with b ∈ J− ∪ {r + 1} − {r + s + 2} from now on. In this case, only the case for
b ∈ {r+1}⋃ J−−{r+s+2} should be considered because, in the case forb ∈ J+−{r+1},
b or b + 1 appear at most twice in one column.

The caseb = r + 1 : Sk(k > 2) is the summation of the tableau of the form

ξ

r + 1 v

r + 2 v−2
...

r + 2 v−2k+2

ζ

= Qr+1(v + r − 2k + 1)Qr+2(v + r)
Qr+1(v + r + 1)Qr+2(v + r + 2)

X3 (2.24)

and

ξ

r + 2 v

r + 2 v−2
...

r + 2 v−2k+2

ζ

= Qr+1(v + r − 2k + 1)Qr(v + r)
Qr+1(v + r + 1)Qr(v + r + 2)

X3 (2.25)

where ξ and ζ are columns with total lengtha − k, which do not containr + 1 and

r + 2 ; v = u + h1: h1 is some shift parameter; the functionX3 does not contain the
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functionQr+1. Obviously, colourb = r + 1 residues in (2.24) and (2.25) cancel each other
under the Bethe ansatz equation (2.6a).

The caseb ∈ J− − {r + s + 2}: Sk(k > 2) is the summation of the tableau of the form

f (k, n, ξ, ζ, u) :=

ξ

b v

...

b v−2n+2

b + 1 v−2n
...

b + 1 v−2k+2

ζ

= Qb−1(v + 2r + 3− 2n− b)Qb(v + 2r + 4− b)
Qb−1(v + 2r + 3− b)Qb(v + 2r + 4− 2n− b)
×Qb(v + 2r + 2− 2k − b)Qb+1(v + 2r + 3− 2n− b)
Qb(v + 2r + 2− 2n− b)Qb+1(v + 2r + 3− 2k − b)X4 06 n 6 k

(2.26)

where ξ and ζ are columns with total lengtha − k, which do not contain b and

b + 1 ; v = u + h2: h2 is some shift parameter and is independent ofn; the functionX4

does not have a colourb pole and is independent ofn. f (k, n, ξ, ζ, u) has colourb poles at
u = −h2−2r −2+ b+2n+u(b)p andu = −h2−2r −4+ b+2n+u(b)p for 16 n 6 k−1;
at u = −h2−2r−2+b+u(b)p for n = 0 and atu = −h2−2r−4+b+2k+u(b)p for n = k.
Evidently, colourb residue atu = −h2 − 2r − 2+ b + 2n + u(b)p in f (k, n, ξ, ζ, u) and
f (k, n+ 1, ξ, ζ, u) cancel each other under the Bethe ansatz equation (2.6a). Thus, under
the Bethe ansatz equation (2.6a),

∑k
n=0 f (k, n, ξ, ζ, u) is free of colourb poles, so isSk.�

Applying theorem 2.1 to (2.17a), one can show thatTλ⊂µ(u) is free of poles under the
Bethe ansatz equation (2.6a). The functionTλ⊂µ(u) should express the eigenvalue of the
transfer matrix whose auxiliary spaceWλ⊂µ(u) is labelled by the skew-Young superdiagram
with shapeλ ⊂ µ. We assume thatWλ⊂µ(u) is a finite-dimensional module of the super
YangianY (sl(r + 1|s + 1)) [N] (or quantum super affine algebraUq(sl(r + 1|s + 1)(1))
[Y] in the trigonometric case). On the other hand, for theλ = φ case, the highest weight
representation of Lie superalgebrasl(r+1|s+1), which is a classical counterpart ofWµ(u),
is characterized by the highest weight whose Kac–Dynkin labelsa1, a2, . . . , ar+s+1 [BMR]
are given as follows:

aj = µj − µj+1 for 16 j 6 r
ar+1 = µr+1+ η1

aj+r+1 = ηj − ηj+1 for 16 j 6 s
(2.27)

whereηj = max{µ′j − r − 1, 0}; µr+2 6 s + 1 for the covariant case. One can read the
relations (2.27) from the ‘top term’ [KS1, KOS] in (2.15) for largequ (see figure 4). The
‘top term’ in (2.15) is the term labelled by the tableaub such that

b(i, j) =
{
i for 16 j 6 µi and 16 i 6 r + 1

r + j + 1 for 16 j 6 µi andr + 26 i 6 µ′1.
(2.28)
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Figure 4. Young supertableau corresponding to the top term forsl(3|2); λ ⊂ µ: λ = φ,
µ = (5, 4, 3, 2, 2, 1).

Then, for largequ, we have∏
(i,j)∈µ

(−1)p(b(i,j))z(b(i, j); u+ µ′1− µ1− 2i + 2j)

= (−1)
∑µ′1

i=r+2µi

{ r+1∏
i=1

µi∏
j=1

z(i; u+ µ′1− µ1− 2i + 2j)

}

×
{ µr+2∏
j=1

µ′j∏
i=r+2

z(r + j + 1; u+ µ′1− µ1− 2i + 2j)

}
≈ (−1)

∑µ′1
i=r+2µi q−2

∑
Nbabtb . (2.29)

Here we omit the vacuum partψa. The ‘top term’ is considered to be related with the
‘highest weight vector’. See [KS1, KOS], for more details.

3. Functional equations

Consider the following Jacobi identity:

D

[
b

b

]
D

[
c

c

]
−D

[
b

c

]
D

[
c

b

]
= D

[
b c

b c

]
D b 6= c (3.1)

whereD is the determinant of a matrix andD

[
a1 a2 . . .

b1 b2 . . .

]
is its minor removingaα ’s

rows andbβ ’s columns. Setλ = φ, µ = (ma) in (2.17a). From relation (3.1), we have

T am (u− 1)T am (u+ 1) = T am+1(u)T am−1(u)+ gam(u)T a−1
m (u)T a+1

m (u) (3.2)

wherea,m > 1; T am (u) = T(ma)(u): a,m > 1; T 0
m(u) = 1: m > 0; T a0 (u) = 1: a > 0;

g1
m(u) =

∏m
j=1P1(u − m + 2j − 2): m > 1; gam(u) = 1: a > 2 andm > 0, or a = 1 and

m = 0. Note that the following relation holds:

gam(u+ 1)gam(u− 1) = gam+1(u)g
a
m−1(u) for a,m > 1. (3.3)

The functional equation (3.2) is a special case of the Hirota bilinear difference equation
[H]. In addition, there are some restrictions on it, which we consider below.

Theorem 3.1.Tλ⊂µ(u) = 0 if λ ⊂ µ contains a rectangular subdiagram withr +2 rows and
s + 2 columns (see [DM, MR]).

Proof. We assume the coordinate of the top-left corner of this subdiagram is(i1, j1).
Consider the tableaub on this Young superdiagramλ ⊂ µ. Fill the first column of this
subdiagram from the top to the bottom by the elements ofb(i, j1) ∈ J : i1 6 i 6 i1+ r +1,
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so as to meet the admissibility conditions (i)–(iii). We findb(i1 + r + 1, j1) ∈ J−. Then
we haver + 2� b(i1+ r + 1, j1) ≺ b(i1+ r + 1, j1+ 1) ≺ · · · ≺ b(i1+ r + 1, j1+ s + 1).
This contradicts the conditionb(i1+ r + 1, j1+ s + 1) � r + s + 2. �

As a corollary, we have

T am (u) = 0 for a > r + 2 andm > s + 2. (3.4)

Consider the admissible tableau on the Young superdiagram with shape(mr+1). From the
admissibility conditions (i)–(iii), only such tableau asb(i, j) = i for 1 6 i 6 r + 1 and
16 j 6 m− s − 1 are admissible. Then we have,

T r+1
m (u) = T(mr+1)(u)

= 1

F(mr+1)(u)

∑
b∈B(mr+1)

∏
(i,j)∈(mr+1)

(−1)p(b(i,j))z(b(i, j); u+ r + 1−m− 2i + 2j)

= 1

F(mr+1)(u)

r+1∏
i=1

m−s−1∏
j=1

(−1)p(i)z(i; u+ r + 1−m− 2i + 2j)

×
∑

b∈B((s+1)r+1)

r+1∏
i=1

m∏
j=m−s

(−1)p(b(i,j))z(b(i, j); u+ r + 1−m− 2i + 2j)

= Fm−s(u+ r − s + 2)
Qr+1(u−m)

Qr+1(u+m− 2s − 2)

×T r+1
s+1 (u+m− s − 1) m > s + 1. (3.5a)

Similarly, we have

T as+1(u) = (−1)(s+1)(a−r−1) Qr+1(u− a − s + r)
Qr+1(u+ a − s − r − 2)

T r+1
s+1 (u+ a − r − 1) a > r + 1.

(3.5b)

From relations (3.5a) and (3.5b), we obtain the following theorem.

Theorem 3.2.For a > 1 andr > 0, the following relation is valid.

T r+1
a+s (u) = (−1)(s+1)(a−1)Fa(u+ r − s + 2)T r+as+1 (u). (3.6)

Applying relation (3.4) to (3.2), we obtain

T r+1
m (u− 1)T r+1

m (u+ 1) = T r+1
m+1(u)T

r+1
m−1(u) m > s + 2 (3.7a)

T as+1(u− 1)T as+1(u+ 1) = gas+1(u)T a−1
s+1 (u)T

a+1
s+1 (u) a > r + 2. (3.7b)

Thanks to theorem 3.2, (3.7a) is equivalent to (3.7b). From theorem 3.2, we also have

T r+1
s+1 (u− 1)T r+1

s+1 (u+ 1) = T r+1
s+2 (u)

(
T r+1
s (u)+ (−1)s+1 T rs+1(u)

F2(u+ r − s + 2)

)
. (3.8)

Remark.In the relation (3.5a), we assume that the parameterm takes only integer values.
However, there is a possibility ofm taking non-integer values, except some ‘singular point’,
for example, on which the right-hand side of (3.5a) contains constant terms, by ‘analytic
continuation’. We can easily observe this fact from the right-hand side of (3.5a) as long as
the normalization factorFm−s(u) is disregarded. This seems to correspond to the fact that
(r + 1)th Kac–Dynkin label (2.27)ar+1 can take a non-integer value [Ka]. Furthermore,
these circumstances seem to be connected with the lattice models based upon the solution of
the graded Young–Baxter equation, which depends on non-additive continuous parameters
(see for example [M, PF]).
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4. Summary and discussion

In this paper, we have executed analytic Bethe ansatz for Lie superalgebrasl(r + 1|s + 1).
Pole-freeness of the eigenvalue formula of the transfer matrix in dressed-vacuum form
was shown for a wide class of finite dimensional representations labelled by skew Young
superdiagrams. A functional relation has been given especially for the eigenvalue formulae
of transfer matrices in dressed-vacuum form labelled by rectangular Young superdiagrams,
which is a special case of the Hirota bilinear difference equation with some restrictive
relations.

It should be emphasized that our method presented in this paper is also applicable even
if such factors like extra sign (different from that of (2.6a)), gauge factor, etc appear in
the Bethe ansatz equation (2.6a). This is because such factors do not affect the analytical
property of the right-hand side of the Bethe ansatz equation (2.6a).

It would be an interesting problem to extend similar analyses to mixed representation
cases [BB2]. So far we have only found several determinant representations of mixed
tableau. The simplest one is given as follows.∑

(a,b)∈X
(−1)p(a)+p(b)ż(a; u+ s)z(b; u+ r) =

∣∣∣∣ Ṫ 1(u+ s) 1
1 T 1(u+ r)

∣∣∣∣ (4.1)

whereX = {(a, b) : a ∈ J̇ ; b ∈ J ; (a, b) 6= (−1, 1)} for sl(r + 1|s + 1) : r 6= s; Ṫ 1(u) and
J̇ are the expressions related to contravariant representations (see appendix B). Here we
assume that the vacuum parts are formally trivial. Note that (4.1) reduces to the classical
one forsl(r + 1|s + 1); r 6= s [BB2], if we drop theu dependence.

In this paper, we mainly consider the Bethe ansatz equations for a distinguished root
system. The case for a non-distinguished root system will be achieved by some modifications
of the setJ+, J− and the functionz(a; u) without changing the setJ and tableau sum rule
(see appendices C, D). It will be interesting to extend a similar analysis presented in this
paper for other Lie superalgebras, such as osp(m|2n).
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Appendix A. Example of theL operator and transfer matrix

In this section, we define the transfer matrix along the same line presented in [EK]. Let
L(u)abαβ be theL operator [KulSk, PS1, PS2, Sc, BS] such that

L(u)aaaa = [u+ 2(−1)p(a)] L(u)bbaa = [u], L(u)baab = [2(−1)p(a)p(b)]qsign(a−b)u (A.1)

where we assumea 6= b; a, b ∈ J . The monodromy matrixJ (u) is defined as

J (u)a,γ1...γN
b,β1...βN

=
∑

a1,...,aN

L(u)
aaN
γNβN

L(u)
aNaN−1
γN−1βN−1

· · ·L(u)a2a1
γ2β2
L(u)

a1b
γ1β1

×(−1)
∑N

i=2(p(γi )+p(βi ))
∑i−1
j=1 p(γj ). (A.2)
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The transfer matrix is defined as supertrace of the monodromy matrix

t (u)
γ1...γN
β1...βN

=
r+s+2∑
a=1

(−1)p(a)J (u)a,γ1...γN
a,β1...βN

. (A.3)

Thanks to the intertwining relation, the commutativity relation [t (u), t (v)] = 0 follows. The
functionT 1(u) defined in (2.13a) will coincide with the the spectrum of the transfer matrix
t (u) under the Bethe ansatz equation (2.6a) for relevantNj . For example, forr = 0, s = 1,
N − N1, N1 − N2, N2 (see (2.6b)) denote the number ofγi equal to 1, 2, 3 in the set
{γ1, . . . , γN } respectively. Moreover, the function

T 1(u) = 1 − 2 − 3 (A.4)

coincides with Sutherland’s solution [Su] on supersymmetrict−J model presented in [EK]
in the limit q → 1, except for the overall scalar factor, after some redefinition.

Appendix B. On the expressions related to contravariant representations

In the main text, we have treated mainly the expressions related to covariant representations.
For contravariant representations, we can also play a similar game. We often mark the
expression related to contravariant representation with a dot. In the contravariant case, the
relations (2.7)–(2.10) and (2.27) become respectively as follows:

J̇ = {−1,−2, . . . ,−r − s − 2} J̇+ = {−1,−2, . . . ,−r − 1}
J̇− = {−r − 2,−r − 3, . . . ,−r − s − 2} (B.1)

−r − s − 2≺ −r − s − 1≺ · · · ≺ −1 (B.2)

p(a) =
{

0 for a ∈ J̇+
1 for a ∈ J̇−

(B.3)

ż(a; u) = ψa(u)Q−a−1(u+ r − s + a − 1)Q−a(u+ r − s + a + 2)

Q−a−1(u+ r − s + a + 1)Q−a(u+ r − s + a) for a ∈ J̇+

ż(a; u) = ψa(u)Q−a−1(u− r − s − a − 1)Q−a(u− r − s − a − 4)

Q−a−1(u− r − s − a − 3)Q−a(u− r − s − a − 2)
for a ∈ J̇− (B.4)

ar+1−j = ξj − ξj+1 for 16 j 6 r
ar+1 = −ξ1− µ̇′s+1

ar+s+2−j = µ̇′j − µ̇′j+1 for 16 j 6 s (B.5)

whereξj = max{µ̇j − s − 1, 0}; µ̇′s+2 6 r + 1.
The functions (2.6d) and (2.11) take the form

P (j)a (u) = [u− wj ]δa,r+s+1 ψa(u) =
{
Pr+s+1(u− 2) for a = −r − s − 2

Pr+s+1(u) for a ∈ J̇ − {−r − s − 2}
(B.6)

if the quantum space is labelled by the contravariant Young superdiagram with shape
˙̃µ = (11);

P (j)a (u) = [u− wj ]δa,1 ψa(u) =
{
P1(u+ r − s − 2) for a = −1

P1(u+ r − s) for a ∈ J̇ − {−1} (B.7)

if the quantum space is labelled by the covariant Young superdiagram with shapeµ̃ = (11).
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If the quantum space is labelled by the contravariant Young superdiagram, in contrast
to the covariant case, the parametertr+1 on the left-hand side of the Bethe ansatz equation
(2.6a) will be −1, since the(r + 1)th Kac–Dynkin label takes negative values for the
contravariant Young superdiagram [BMR]. For−a ∈ J̇ and (B.4) with (B.7), the following
relation holds

z(a; u) = (−1)N ż(−a; s − r − u)|
u
(a)
k →−u(a)k ,wi→−wi . (B.8)

Note that this relation reduces to the crossing symmetry [R2] forslr+1, if we set s = −1
(see, also [KS1]). Pole freeness of the functionṪλ̇⊂µ̇(u) under the Bethe ansatz equation
(2.6a) can be proved in the same way as theorem 2.1.

Appendix C. Example of the non-distinguished simple roots case:
p(1) = 1,p(2) = 0,p(3) = 1 grading

Let α1 andα2 be the simple roots ofsl(1|2) normalized so that(α1|α1) = (α2|α2) = 0 and
(α1|α2) = (α2|α1) = −1 (see figure C1).

In this case, the sets (2.7) and (B.1) becomeJ+ = {2}, J− = {1, 3}; J̇+ = {−2},
J̇− = {−1,−3}. The functionz(a; u) = a

u
(a ∈ J ) has the form

1 = [u− 2]N
Q1(u+ 1)

Q1(u− 1)
2 = [u]N

Q1(u+ 1)Q2(u− 2)

Q1(u− 1)Q2(u)

3 = [u]N
Q2(u− 2)

Q2(u)
(C.1)

and the functioṅz(a; u) = a
u
(a ∈ J̇ ) has the form

−3 = [u− 2]N
Q2(u+ 1)

Q2(u− 1)
−2 = [u]N

Q1(u− 2)Q2(u+ 1)

Q1(u)Q2(u− 1)

−1 = [u]N
Q1(u− 2)

Q1(u)
. (C.2)

Here we assume the quantum spaces are labelled by Young superdiagrams with shapes
µ̃ = (11) and ˙̃µ = (11) respectively; for simplicity, inhomogeneity parameterswi are set to
0. For example, forλ = φ;µ = (21), (2.15) has the form

T 1
2 (u) = − 1 2 + 1 3 + 2 2 − 2 3

= − [u− 3]N [u+ 1]N
Q1(u+ 2)Q2(u− 1)

Q1(u− 2)Q2(u+ 1)

+[u− 3]N [u+ 1]N
Q1(u)Q2(u− 1)

Q1(u− 2)Q2(u+ 1)

+[u− 1]N [u+ 1]N
Q1(u+ 2)Q2(u− 3)

Q1(u− 2)Q2(u+ 1)

−[u− 1]N [u+ 1]N
Q1(u)Q2(u− 3)

Q1(u− 2)Q2(u+ 1)
(C.3)

Figure C1. Dynkin diagram for the Lie superalgebrasl(1|2) corresponding to the non-
distinguished simple roots: deg(α1) = deg(α2) = 1.
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and forλ = φ;µ = (12), (2.15) has the form

T 2
1 (u) =

1

[u− 1]N

(
1
1
− 1

2
+ 1

3
− 2

3
+ 3

3

)
= [u− 3]N

Q1(u+ 2)

Q1(u− 2)
− [u− 1]N

Q1(u+ 2)Q2(u− 3)

Q1(u− 2)Q2(u− 1)

+[u− 1]N
Q1(u+ 2)Q2(u− 3)

Q1(u)Q2(u− 1)
− [u+ 1]N

Q1(u+ 2)Q2(u− 3)

Q1(u)Q2(u+ 1)

+[u+ 1]N
Q2(u− 3)

Q2(u+ 1)
. (C.4)

We note that the functioṅT 1(u) associated with the contravariant Young superdiagram
µ̇ = φ; λ̇ = (11):

Ṫ 1(u) = − −3 + −2 − −1 (C.5)

coincides with Essler and Korepin’s solution [EK] on the supersymmetrict − J model in
the limit q → 1 except overall scalar factor after some redefinition†. Pole freeness of the
functionsT a(u) and Ṫ a(u) under the Bethe ansatz equation (2.6a) can be proved in the
same way as theorem 2.1.

Appendix D. Example of non-distinguished simple roots case:
p(1) = p(2) = 1,p(3) = 0 grading

Let α1 andα2 be the simple roots ofsl(1|2) normalized so that(α1|α1) = −2,(α2|α2) = 0
and (α1|α2) = (α2|α1) = 1 (see figure D1). In this case, the sets (2.7) and (B.1) become
J+ = {3}, J− = {1, 2}; J̇+ = {−3}, J̇− = {−1,−2}. The functionz(a; u) = a

u
(a ∈ J )

has the form

1 = [u− 2]N
Q1(u+ 1)

Q1(u− 1)
2 = [u]N

Q1(u− 3)Q2(u)

Q1(u− 1)Q2(u− 2)

3 = [u]N
Q2(u)

Q2(u− 2)
(D.1)

and the functioṅz(a; u) = a
u
(a ∈ J̇ ) has the form

−3 = [u+ 2]N
Q2(u− 1)

Q2(u+ 1)
−2 = [u]N

Q1(u+ 2)Q2(u− 1)

Q1(u)Q2(u+ 1)

−1 = [u]N
Q1(u− 2)

Q1(u)
. (D.2)

Here we assume the quantum spaces are labelled by Young superdiagrams with shapes
µ̃ = (11) and ˙̃µ = (11) respectively; for simplicity, inhomogeneity parameterswi are set to
0.

Figure D1. Dynkin diagram for the Lie superalgebrasl(1|2) corresponding to the non-
distinguished simple roots: deg(α1) = 0, deg(α2) = 1.

† This coincidence does not necessarily mean the coincidence of underlying representation of Lie superalgebra
sl(r + 1|s + 1).
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For example, forλ = φ;µ = (21), (2.15) has the form

T 1
2 (u) = 1 2 − 1 3 − 2 3 + 3 3

= [u− 3]N [u+ 1]N
Q2(u+ 1)

Q2(u− 1)
− [u− 3]N [u+ 1]N

Q1(u)Q2(u+ 1)

Q1(u− 2)Q2(u− 1)

−[u− 1]N [u+ 1]N
Q1(u− 4)Q2(u+ 1)

Q1(u− 2)Q2(u− 3)

+[u− 1]N [u+ 1]N
Q2(u+ 1)

Q2(u− 3)
(D.3)

and forλ = φ;µ = (12), (2.15) has the form

T 2
1 (u) =

1

[u− 1]N

(
1
1
+ 1

2
− 1

3
+ 2

2
− 2

3

)
= [u− 3]N

Q1(u+ 2)

Q1(u− 2)
+ [u− 1]N

Q1(u− 4)Q1(u+ 2)Q2(u− 1)

Q1(u− 2)Q1(u)Q2(u− 3)

−[u− 1]N
Q1(u+ 2)Q2(u− 1)

Q1(u)Q2(u− 3)
+ [u+ 1]N

Q1(u− 4)Q2(u+ 1)

Q1(u)Q2(u− 3)

−[u+ 1]N
Q1(u− 2)Q2(u+ 1)

Q1(u)Q2(u− 3)
. (D.4)

We note that the functioṅT 1(u) associated with the contravariant Young superdiagram
with shapeλ̇ = φ; µ̇ = (11)

Ṫ 1(u) = −3 − −2 − −1 (D.5)

coincides with Lai’s solution [L] on supersymmetrict − J model presented in [EK] in
the limit q → 1 except overall scalar factor after some redefinition†. Pole freeness of the
functionsT a(u) and Ṫ a(u) under the Bethe ansatz equation (2.6a) can be proved in the
same way as theorem 2.1.

Appendix E. Other representation of T a and Tm

For simplicity, we assume the vacuum part is formally trivial. Define the functionsAa, Ba,
Am andBm by the generating series such that

∞∑
k=−∞

Ak(u+ k − 1)Xk = (1− z(1; u)X)−1 · · · (1− z(r + 1; u)X)−1 (E.1)

∞∑
l=−∞

Bl(u+ l − 1)Xl = (1− z(r + 2; u)X) · · · (1− z(r + s + 2; u)X) (E.2)

∞∑
k=−∞

Bk(u+ k − 1)Xk = (1+ z(r + s + 2; u)X)−1 · · · (1+ z(r + 2; u)X)−1 (E.3)

∞∑
l=−∞

Al(u+ l − 1)Xl = (1+ z(r + 1; u)X) · · · (1+ z(1; u)X). (E.4)

† This coincidence does not necessarily mean the coincidence of underlying representation of Lie superalgebra
sl(r + 1|s + 1).



7990 Z Tsuboi

Combining these relations, we obtain

T a(u) =
min(r+1,a)∑

l=0

Ba−l(u− l)Al(u+ a − l) (E.5)

Tm(u) =
min(s+1,m)∑

l=0

Am−l(u− l)Bl(u+m− l). (E.6)

Note that these functionsAm(u) andAa(u) are analogous to eigenvalue formulae of transfer
matrices in dressed-vacuum form of fusionUq(sl

(1)
r+1) vertex model labelled by Young

diagrams with shapes(m1) and(1a) respectively. We also note that the functionsBa(u) and
Bm(u) are analogous to eigenvalue formulae of transfer matrices in dressed-vacuum form
of fusion Uq(sl

(1)
s+1) vertex model labelled by Young diagrams with shapes(1a) and (m1)

respectively.
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