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Abstract. From the point of view of the Young superdiagram method, an analytic Bethe
ansatz is carried out for Lie super algebi& + 1|s + 1). For the transfer matrix eigenvalue
formulae in dressed-vacuum form, we present some expressions, which are quantum analogues
of Jacobi-Trudi and Giambelli formulae for Lie superalgeli@ + 1|s + 1). We also propose
transfer-matrix functional relations, which are Hirota bilinear difference equations with some
constraints.

1. Introduction

In [KNS1], a class of functional relations, tHB-system, was proposed. It is a family

of functional relations for a set of commuting transfer matrices of solvable lattice models
associated with any quantum affine algelivgéG"). Using theT-system, we can calculate
various physical quantities [KNS2] such as the correlation lengths of the vertex models and
central charges of RSOS models. Thesystem is not only a family of transfer-matrix
functional relations but also a two-dimensional Toda field equation on discrete spacetime.
And it has beautiful pfaffian and determinant solutions [KOS, KNH, TK] (see also [T]).

In [KS1], an analytic Bethe ansatz [R1] was carried out for fundamental representations
of the YangiansY (G)[D], where G = B,, C, and D,. That is, eigenvalue formulae in
dressed-vacuum form were proposed for the transfer matrices of solvable vertex models.
These formulae are Yangian analogues of the Young tableau &ord satisfy certain semi-
standard-like conditions. It had been proven that they are free of poles under the Bethe
ansatz equation. Furthermore, for the= B, case, these formulae were extended to the
case of finite dimensional modules labelled by skew Young diagramse [KOS]. In an
analytic Bethe ansatz context, the above-mentioned solutions df #estem correspond
to the eigenvalue formulae of the transfer matrices in dressed-vacuum form labelled by
rectangular Young diagranis= ¢, u = (m“) (see also [BR, KLWZ, K, KS2, S2]).

The purpose of this paper is to extend similar analyses to the Lie superalgebra
G = sl(r + 1s + 1) [Ka] case (see also [C] for a comprehensible account on Lie
superalgebras). Throughout this paper, we frequently use similar notation to that presented
in [KS1, KOS, TK]. Studying supersymmetric integrable models is important not only in
mathematical physics but also in condensed matter physics (cf [EK, FK, KE, S1, ZB]). For
example, the supersymmetrie / model received much attention in connection with high
superconductivity. In the supersymmetric models, Bimatrix satisfies the graded Yang—
Baxter equation [KulSK]. The transfer matrix is defined emipertrace of the monodromy
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matrix. As a result, extra signs appear in the Bethe ansatz equation and eigenvalue formula
of the transfer matrix.

There are several unequivalent choices of simple root system for Lie superalgebra. We
treat the so-called distinguished simple root system [Ka] in the main text. We introduce the
Young superdiagram [BB1], which is associated with a covariant tensor representation. To
be precise, this Young superdiagram is different from the classical one in that it carries a
spectral parameter. In contrast to the ordinary Young diagram, there is no restriction on
the number of rows. We define a semi-standard-like tableau on it. Using this tableau, we
introduce the functior¥;, (1) (2.15). This should be a fusion transfer matrix of dressed-
vacuum form in the analytic Bethe ansatz. We prove the pole-freenéB4(0j = 7(14)(u),

a crucial property of the analytic Bethe ansatz. Due to the same mechanism presented in
[KOS], the functionT, -, («) has a determinant expression whose matrix elements are only
the functions associated with Young superdiagrams with shape¢; u = (m) or (1%).

It can be viewed as a quantum analogue of Jacobi—Trudi and Giambelli formulae for Lie
superalgebral(r + 1|s + 1). Then one can easily show that the functij, (x) is free

of poles under the Bethe ansatz equationgR.6Among the above-mentioned eigenvalue
formulae of transfer matrix in dressed-vacuum form associated with rectangular Young
superdiagrams, we present a class of transfer-matrix functional relations. It is a special case
of Hirota bilinear difference equation [H].

Deguchi and Martin [DM] discussed the spectrum of the fusion model from the point
of view of representation theory (see also, [MR]). This present paper will partially give us
an elemental account of their result from the point of view of the analytic Bethe ansatz.

The outline of this paper is as follows. In section 2, we execute an analytic Bethe ansatz
based upon the Bethe ansatz equationaj2a@sociated with the distinguished simple roots.
The observation that the Bethe ansatz equation can be expressed by a root system of Lie
algebra is traced back to [RW] (see also, [Kul] for & +1|s+1) case). Moreover, Kuniba
et al [KOS] conjectured that the left-hand side of the Bethe ansatz equatios) a6 be
written as a ratio of certain ‘Drinfeld polynomials’ [D]. We introduce the functibg,, (),
which should be the transfer matrix whose auxiliary space is a finite-dimensional module of
super Yangiar¥ (s/(r + 1|s + 1)) [N] or quantum affine superalgebta, (s/(r + 1|s + 1)V)

[Y], labelled by a skew Young superdiagramc u. The origin of the functionZ*(u)

goes back to the eigenvalue formula of the transfer matrix of the Perk—Schultz model
[PS1,PS2, Sc], which is a multicomponent generalization of the six-vertex model (see also
[Kul]). In addition, the functionZ(x) reduces to the eigenvalue formula of the transfer
matrix derived by the algebraic Bethe ansatz (for example, the [FK}: 1, s = O case;

[EK]: r = 0,s = 1 case; [EKS1,EKS2]:r = s = 1 case). In section 3, we propose
functional relations, th@ -system, associated with the transfer matrices in dressed-vacuum
form defined in the previous section. Section 4 is devoted to a summary and discussion. In
appendix A, we briefly mention the relation between the fundaméntglerator and transfer
matrix. In this paper, we treat mainly the expressions related to covariant representations.
For contravariant ones, we present several expressions in appendix B. Appendices C and D
provide some expressions related to non-distinguished simple roetgl{i?). Appendix E
explains how to represent the eigenvalue formulae of transfer matrices in dressed-vacuum
form 7,,(u) and 7% (u) in terms of the functions4,, (1), A% ), B,,(v) and B*(u), which

are analogous to the fusion transfer matrice#/pfG?) vertex models § = si, 1, sl;+1).
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Figure 1. Dynkin diagram for the Lie superalgebrd(r + 1|s + 1) corresponding to the
distinguished simple roots: open circles denote even r@gtsrossed circles denote odd roots
o with (Dlj|0tj) =0.

2. Analytic Bethe ansatz

Lie superalgebra [Ka] is &, graded algebrd&j = G @ Gy with a product [ ], whose
homogeneous elemenise G, b € G (o, B € Zy = {0, 1}) andc € G satisfy the following
relations.
[a,b] € Guyp
la, b] = —(—=1)*’[b, a] (2.1)
[a,[b,c]]l =[a, b], ] + (—1)“’3[b, [a, ]].
The set of non-zero roots can be divided into the set of non-zero even roots (bosonic roots)
A and the set of odd roots (fermionic roots). For thes!(r + 1|s + 1) case, they read

Ap={a—€}U{s =8t #j  Ar={t( -3} (2.2)
whereey, ..., €41; 61, ..., 8,41 are basis of dual space of the Cartan subalgebra with the
bilinear form( | ) such that

(eilej) = &i ), (€il8;) = (Bile;) = 0, (8:18)) = =i ;- (2.3)

There are several choices of simple root systems reflecting choices of Borel subalgebra.
The simplest system of simple roots is the so-called distinguished one [Ka] (see figure 1).
Let {1, ..., 1511} be the distinguished simple roots of Lie superalgetita+ 1|s + 1)

o =€ — €41 i=1,2,...,r
41 = €41 — 81 (2.4)
Ol.]'+r+1=8j—5j+1 j=1,2,...,S

and with the grading

de ) 0 for even root 2.5)
Joa) = 1 for odd root. ’
Especially for the distinguished simple root, we have(@gy= 8,.,+1-
We consider the following type of the Bethe ansatz equation (cf [Kul, RW, KOS]).

P, @4 1 r4s+1 (a)
_ (Mfa) fi> — (o T Qb% + (@) (2.6
Polug” =) b=1 Qo — (dalp))
Ny
Qu() = [ Jlu — uj”] (2.6b)
j=1
N
Pouw) =[] P () (2.60)
j=1
PP u) =[u— wj]‘s“'1 (2.6d)

where k] = (¢" —q¢™)/(q —q™Y); N, € Zo; u,wjeCra,keZ(1<a<<r+s+1,
1<k<N);t,=1forl<a<r+1,t, =-1forr+2<a <r+s+1. Inthis paper, we
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suppose thaj is generic. The left-hand side of the Bethe ansatz equation)(.6elated to

the quantum space. We suppose that it is given by the ratio of some ‘Drinfeld polynomials’
labelled by skew Young diagramisc /i (cf [KOS]). For simplicity, we consider only the
casei = ¢, i = (1). The generalization to the case for any skew Young diagram will
be achieved by the empirical procedures mentioned in [KOS]. The faetby?®9) of the
Bethe ansatz equation (2)6appears so as to make the transfer matrix to segertrace

of the monodromy matrix. We define the sets

J={1L2,....,r+s+2} Jo={1,2,...,r+1}
Jo={r+2r+3,....r+s+2}
with the total order

(2.7)

1<2<---<r+s+2 (2.8)
and with the grading

0 ae]+

2.9
1 fora e J_. (2:9)

pla) =

Fora € J, set

o Qualutat DO ta—2)
B R o TN R

L Qv 1u+2r —a+10)Q,(u+2r—a+4
= v —at Y0t —at) ST (210)

where Qo(u) = 1, Q,4512(u) = 1 and

Pi(u+2) fora=1

Valu) = Py(u) fora e J — {1}. (2.11)

In this paper, we often express the functiga; «) as the boxa| , whose spectral parameter
u will often be abbreviated. Under the Bethe ansatz equation, we have

Res__,,,0@b:iu) +z(b+Lu) =0 1<b<r (2.129)
Re%:frflJru;"H) (Z (r + 1; u) - Z(r + 2; M)) =0 (212))
ReS_ o 2pppu @b u) +2(b+ L u)) =0 r+2<b<r+s+1 (2.1x)

We will use the functionsl“(u) and7,,(u) (a € Z; m € Z; u € C) determined by the
following generating series

A+z0+s+2w)X) A4z +2wX) A+ 20 +LwX) - A+ z(L w)X)

= > Fluta—1Tu+a—1X (2.13)
a—1

Piu—2j+a—1) fora > 2
j=1

J=

Fouy =11 fora =1 2.1%)
1
e fora=0
Po(u— 1)
0 fora < -1

A-zLwX)™t Az +LwX) 7 A—z2+2wWX) - L —z(r + s+ 2 u)X)
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Figure 2. Young superdiagram with shape C u: Figure 3. Young superdiagram with shapé c u':
2=1(2,2,1,00), u=(55421). A'=(3,2000,u =(54332.

00

= Y T.(u+m—DX" (2.1%)

m=—00

whereX is a shift operatoX = €*. In particular, we hav@d () = Py(u —1); To(u) = 1;
T%u)=0fora <0;7,u)=0form <O0.

We remark that the origin of the functiafi*(x) and the Bethe ansatz equation .6
traces back to the eigenvalue formula of the transfer matrix and the Bethe ansatz equation
of the Perk—Schultz model [Sc] except the vacuum part, some gauge factors and extra signs
after some redefinition. (See also [Kul)).

Let A C n be a skew Young superdiagram labelled by the sequences of non-negative
integersh = (g, Ap,...) andp = (g, w2, ...)suchthai;, > A1 i =1,2,...; A1 > Ap >
o205 u1 > pp 2 2 0and) = (A, 15, ...) be the conjugate of (see figures 2 and
3). On this skew Young superdiagranc ., we assign coordinatés j) e Z2 such that the
row index: increases as we go downwards and the column indexreases as we go from
left to right and that(1, 1) is on the top left corner of.. We define an admissible tableau
b on the skew Young superdiagraanC u as a set of elemenis, j) € J labelled by the
coordinateqi, j) mentioned above, obeying the following rule (admissibility conditions).

(i) For any elements of,,

b(i, j) =bl,j+1 b, j) <bGi+1,)) (2.148)
(ii) for any elements of/_,

b(i, j) < b, j+1) b(i, j) =bi+1,)) (2.1%)
(iif) and for any elements of ,

b(i, j) XbG, j+1) b, j) <bi+1,)). (2.14)

Let B(A C ) be the set of admissible tableau brT u.
For any skew-Young superdiagramc ., define the functior?, -, (1) as follows

IZELCM(M) = Z 1_[ (_1)1)(b(i’j))z(b(i, P)iu—p+ M;_ — 2+ 2])
Facu®) pebat i peacmw
(2.15)
where the product is taken over the coordinateg) onx C n and
M1
Frcu) = [ [F 5t iy = pa = = 2 + 2 = 1). (2.16)

j=1

In particular, for an empty diagram, set7,(u) = F4(u) = 1. The following relations
should be valid for the same reason mentioned in [KOS], that is, they will be verified by
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induction ongy or ;.

Tcu(u) = l<idje<tm(7'“',_}‘;_i+j(u — 1t uy == A} +i+j—1) (2.17a)
= det (T, s4iju—pr+py+uj+xr—i—j+1). (2.17)
1<, j<p)

For example, for the. = ¢, u = (2%),r = 1, s = 0 case, we have

1 fi]i| [1[1] [1][2] [1]3
T(ZZ)(M)_ f(gz)(u) Q 212 _‘ 213 ‘_‘ 213 ‘+‘ 213
- Q-2 014 + D Qa2u —2)
= Pl(u + 2)P1(u + 4)7Q2(u n 2) P]_(M + 2)P1(u + 4) Ql(u n 3) Qz(l,{ n 2)
B , 01 + 5) Q2 — 2) , 02— 2)
) WO ) WS e A o
| TPw-1 T3w)
- ‘ TYu) T?u+1) (2.18)
where
TH0) ~[1]+2]-[3)
B 01(u — 1) 01 +30s) 02(u)
=Pt ) TP 0w n 0w+ 2 Y g+ 2)
(2.19)
20y L (1] [1] [2] 3)
_ Qo(u—1) Q1(u)Qo(u — 1)
=Pt v TG+ 200w+ D)
014 + Q2 — 1) 0ol — 1)
—Pl(Li 1) 010 + 20304 + 3 +he+D SO (2.20)
(AT 2] (s
0= 50, —2]+[3[+[3]|-[3]
3] 3] [3] [3]
o 024 — 2) 014 + 1) Q2(u — 2)
= R o T Y o w300+ 2)
01 +5)02(u — 2) 02 — 2)
+Pr(u+2) 0101 +3)0x(u + 4) — Pi(u+ 2)7Q2(u T . (2.22)

Remark 1.If we drop theu dependence of (2.h] and (2.11), they reduce to classical
Jacobi—Trudi and Giambelli formulae fei(r + 1|s +1) [BB1, PT], which bring us classical
(super) characters.

Remark 2.In the caser = ¢ ands = —1, (2.17a) and (2.17b) correspond to the quantum
analogue of Jacobi—Trudi and Giambelli formulae fr,; [BR].

Remark 3.Equations(2.17a) and(2.17b) have the same form as the quantum Jacobi—Trudi
and Giambelli formulae fqu(Bfll)) in [KOS], but the functionZ“(u) is quite different.

The following theorem is essential in analytic Bethe ansatz, which can be proved along
the similar line of the proof of [KS1, theorem 3.3.1].

Theorem 2.1For any integew, the function7“(u) is free of poles under the condition that
the Bethe ansatz equation (&)8s valid.
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At first, we present a lemma which is necessary for the proof of theorem 2.1. Lemma 2.2
is asl(r + 1|s + 1) version of [KS1, lemma 3.3.2] and follows straightforwardly from the
definitions ofz(a; u) (2.10).

Lemma 2.2For anyb € J, — {r + 1}, the function

b |
1 (2.22)

u—2

does not contain the functio@, (2.6b).

Proof of theorem 2.1. For simplicity, we assume that the vacuum parts are formally
trivial, that is, the left-hand side of the Bethe ansatz equationads constantly—1.
We prove that7“(u) is free of the colouw pole, namely, Reuszuzm_u T%u) = 0 for any
b € J —{r + s+ 2} under the condition that the Bethe ansatz equatioraf2s6valid. The
function z(c; u) =[c| with ¢ € J has the coloub pole only forc = b or b+ 1, so we

shall trace onI@ or| b+ 1| DenoteS; the partial sum of7 “(u), which contains boxes
among@ or| b+ 1|. Apparently,Sp does not have a colour pole. This is also the case
with S, for b € J,. — {r + 1} since the admissible tableau have the same subdiagrams as

in (2.22) and thus do not involv®, by lemma 2.2. Now we examing; which is the
summation of the tableau of the form

(€] £
@ b+1 (2.23)
¢ ¢

where| £ | and| ¢ | are columns with total length — 1 and do not involveb | and| b + 1],
Thanks to relations (2.1—(2.12Z), colour b residues in these tableau (2.23) cancel each
other under the Bethe ansatz equation 2.6We deal withS; only for 3 < k£ < a and
k=2withbe J U{r+1} —{r +s+ 2} from now on. In this case, only the case for
b e {r+1} J- —{r+s+2} should be considered because, in the casé for/, — {r + 1},
m or appear at most twice in one column.

The caseb =r + 1 : S (k > 2) is the summation of the tableau of the form

§
r+11,
r+2 02 QA+ =2k + 102 +1)
: QAT+ 10+ +2)

X3 (2.24)

r+2 | g2

¢

and

§
r+2|,

r+2|,2 04 r—=2k+1)0,(v+r)
: T 0+ r+1)0,(v+r+2)

X3 (2.25)

r+2 | g2

4
where@ and@ are columns with total length — k, which do not contaidir +1|and
; v = u + hy: hp is some shift parameter; the functiofs does not contain the
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function Q, 1. Obviously, colou = r + 1 residues in (2.24) and (2.25) cancel each other
under the Bethe ansatz equation €.6

The caseb € J_ — {r +s + 2}: Siy(k > 2) is the summation of the tableau of the form

§
b |,
b

v—2n

. v—2n+2
f(k’n’§’§7u)'_ b+1

b+1| o2
¢
01w+ 2r+3-2n—-D)0(v+2r +4 - b)
T Q10+ 2r+3-b)Q(v+2r +4—2n—b)
Oy(v+2r+2—2k—b)Qpr1(v+2r +3—2n—b)
Or(v+2r +2—-2n-b)Qp1(v +2r + 3 -2k —b)

(2.26)

where| | and| ¢ | are columns with total lengta — k, which do not containb| and

b+ 1|, v=u+ hy hyis some shift parameter and is independent;ofhe functionX,
does not have a colour pole and is independent of f(k, n, &, ¢, u) has coloum poles at
u=—hy—2r—2+b+2n+ul andu = —hy—2r —4+b+2n+ul for 1 <n <k—1;
atu = —h2—2r—2+b+u§,b> forn =0 and au = —h2—2r—4+b+2k+u;f’) forn = k.
Evidently, colourb residue atu = —hy, —2r — 2+ b + 2n + u;”) in f(k,n, &, ¢,u) and
fk,n+1,&, ¢, u) cancel each other under the Bethe ansatz equatior)(ZT®us, under
the Bethe ansatz equation (2)62’;:0f(k, n, &, ¢,u) is free of colourb poles, so isS;.00

Applying theorem 2.1 to (2.8, one can show thal;, () is free of poles under the
Bethe ansatz equation (2)6 The functionZ,, (1) should express the eigenvalue of the
transfer matrix whose auxiliary spa®é -, («) is labelled by the skew-Young superdiagram
with shaper C u. We assume thaW, ., () is a finite-dimensional module of the super
Yangian Y (s/(r + 1|s + 1)) [N] (or quantum super affine algebid, (s/(r + 1|s + 1)?)

[Y] in the trigonometric case). On the other hand, for the- ¢ case, the highest weight
representation of Lie superalgebid + 1|s + 1), which is a classical counterpart 8f, («),

is characterized by the highest weight whose Kac—-Dynkin labgls,, .. ., a,+,+1 [BMR]
are given as follows:

aj = Jj = Mj+1 forl<j<r
Qry1 = Mr41+ M (2.27)
Ajirsl = Nj = Nj41 for1<j<s

wheren; = max{u} —r —1,0}; w40 < s+ 1 for the covariant case. One can read the
relations (2.27) from the ‘top term’ [KS1,KOS] in (2.15) for largé (see figure 4). The
‘top term’ in (2.15) is the term labelled by the tableasuch that

for1<j<u and 1<

<r+1
r+j+1 for 1< j<pandr+2<i < pf.

b(, j) = (2.28)
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111|

Wl | =
v}
)

‘»BJ;J;CAZI\DH
[S23 I

Figure 4. Young supertableau corresponding to the top termsfg8|2); » C u: A = ¢,
w=(5473221).

Then, for largeg", we have
[T COr¢D 206, ) u+ uy = pa— 2 +2j)

(i,j)en

u r+1 i
— (_1)2%2#1’{ nnz(z’; u+ pL/l —p1—2i + 2j)}

i=1j=1

Hri2 /L}
X{]_[ I1 z(r+j+l;u+/l1—/x1—2i+2j)}
j=li=r+2

~ (1) iz g2 X Nty (2.29)

Here we omit the vacuum pait,. The ‘top term’ is considered to be related with the
‘highest weight vector’. See [KS1, KOS], for more details.

3. Functional equations

Consider the following Jacobi identity:

o[t]o[]-o[f]oi]-0]s ]p eee e

ay az
by by ...
rows andbg’s columns. Sek = ¢, u = (m“) in (2.17a). From relation (3.1), we have

Tiu— DT +1) =T T () + go )T )T (u) (32
wherea,m > 1; T u) = Tpuey(u): a,m > 1; TO(u) = 1 m > 0; T¢(u) = 1. a > 0;

glu) = ]_[;":lPl(u —-m+2j—-2:m>1,g'u)=1a>2andm >0, ora =1 and

m = 0. Note that the following relation holds:
gnu+1Dg,(u—21 =gy (g, (1) fora,m > 1. (3.3)

The functional equation (3.2) is a special case of the Hirota bilinear difference equation
[H]. In addition, there are some restrictions on it, which we consider below.

where D is the determinant of a matrix antl is its minor removinga,'s

Theorem 3.17,,(u) = 0 if A C pu contains a rectangular subdiagram with 2 rows and
s + 2 columns (see [DM, MR]).

Proof. We assume the coordinate of the top-left corner of this subdiagrat,ig;).
Consider the tableah on this Young superdiagrarh c w. Fill the first column of this
subdiagram from the top to the bottom by the elements(ofj;) € J: i1 <i <i1+r+1,
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S0 as to meet the admissibility conditions (i)—(iii). We fihdy +r + 1, j1) € J_. Then
we haver +2 < b(i1+r+1, j1) <blr+r+1, 1+ <---<bliz+r+1, j1+s+1).
This contradicts the conditiob(i, +r + 1, j1 +s+1) <r +s+ 2. O

As a corollary, we have

T.wm)=0 fora >r+2andm > s+ 2. (3.4)

Consider the admissible tableau on the Young superdiagram with ghdp&. From the
admissibility conditions (i)—(iii), only such tableau a&s¢i, j) =i for 1 <i <r + 1 and
1< j<m-—s—1are admissible. Then we have,

T (u) = Topreny (1)

) ..
et (D)PCED L (b )7+ 1 —m— 26+ 2))
F 1y (u) beB(m™1) (i, j)e(m+1)
1 r+lm—s—-1 i)
1 (_1)17(!Z(i;u+”+l_m_2i+2j)
f(m"+1) (I/t) E Jl:!-

r+1 m
x> TT TT GoreeDz@h, jyiu+r+1—m—2i+2))
beB((s+1)+1) i=1 j=m—s
Qri1(u —m)
Orr1(u+m—2s —2)
T u+m—s—-1)  m=s+1 (3.59)
Similarly, we have

=F" u+r—-—s+2

Qralu —a—s+r)

T = (-1 (s+1)(a—r-1) Tr+1 —r -1 2 1
@) = (=1 Orauta—s—r-2 1 wt+a—r ) az>r+
(3.%0)
From relations (3.8) and (3.H), we obtain the following theorem.
Theorem 3.2Fora > 1 andr > 0, the following relation is valid.
T w) = (DS F @+ r — s + 2T ). (3.6)
Applying relation (3.4) to (3.2), we obtain
T u - DT w+ D) = T T ) m=s+2 (3.79)
T — DT+ 1) =g )T )T ) a>r+2. (3.7)
Thanks to theorem 3.2, (&Yis equivalent to (3.6). From theorem 3.2, we also have
17 ()
r+1 r+1 r+1 r s s+1
T = DT+ D) =T/ 5 W) (7; ) + (-1t =0 ;r — +2)>. (3.8)

Remark.In the relation (3.8), we assume that the parametertakes only integer values.

However, there is a possibility @f taking non-integer values, except some ‘singular point’,

for example, on which the right-hand side of @.%ontains constant terms, by ‘analytic
continuation’. We can easily observe this fact from the right-hand side of)(8$long as

the normalization factof=—* (u) is disregarded. This seems to correspond to the fact that

(r + th Kac—Dynkin label (2.27),,1 can take a non-integer value [Ka]. Furthermore,
these circumstances seem to be connected with the lattice models based upon the solution of
the graded Young—Baxter equation, which depends on non-additive continuous parameters

(see for example [M, PF]).
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4. Summary and discussion

In this paper, we have executed analytic Bethe ansatz for Lie superalgébralls + 1).
Pole-freeness of the eigenvalue formula of the transfer matrix in dressed-vacuum form
was shown for a wide class of finite dimensional representations labelled by skew Young
superdiagrams. A functional relation has been given especially for the eigenvalue formulae
of transfer matrices in dressed-vacuum form labelled by rectangular Young superdiagrams,
which is a special case of the Hirota bilinear difference equation with some restrictive
relations.

It should be emphasized that our method presented in this paper is also applicable even
if such factors like extra sign (different from that of (2)5 gauge factor, etc appear in
the Bethe ansatz equation ()6 This is because such factors do not affect the analytical
property of the right-hand side of the Bethe ansatz equatiom®)(2.6

It would be an interesting problem to extend similar analyses to mixed representation
cases [BB2]. So far we have only found several determinant representations of mixed
tableau. The simplest one is given as follows.

TYu +5) 1

_1\P@+p®) 5. . —
> D au+)ziu+r) = 1 Tl 4 1)

(a,b)eX

(4.1)

whereX = {(a,b):a e J;be J:(a,b) # (=1, 1)} for si(r + 1|s + 1) : r #s; T*(u) and

J are the expressions related to contravariant representations (see appendix B). Here we
assume that the vacuum parts are formally trivial. Note that (4.1) reduces to the classical
one forsi(r + 1|s + 1); r # s [BBZ2], if we drop theu dependence.

In this paper, we mainly consider the Bethe ansatz equations for a distinguished root
system. The case for a non-distinguished root system will be achieved by some modifications
of the set/,, J_ and the functior; (a; u) without changing the sef and tableau sum rule
(see appendices C, D). It will be interesting to extend a similar analysis presented in this
paper for other Lie superalgebras, such agas).
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Appendix A. Example of the L operator and transfer matrix

In this section, we define the transfer matrix along the same line presented in [EK]. Let
L(u)3 be theL operator [KulSk, PS1,PS2, Sc, BS] such that

L)% = [u + 2(-1)P“)] L)y, = [u], L)y = [2(=D)P@r®]gsome=be (A1)
where we assume # b; a, b € J. The monodromy matrix/ (u) is defined as

JV1ees - b
TR 55 = 2 L Len iyl - Legi Ly,

X(_l)Z:VZQ(P(Vi)+p(/3i)) it () (A.2)
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The transfer matrix is defined as supertrace of the monodromy matrix

r+s+2
= D DM OT @ (A-3)
a=1

Thanks to the intertwining relation, the commutativity relatioq:}, z (v)] = O follows. The
function 71(x) defined in (2.18) will coincide with the the spectrum of the transfer matrix
t(u) under the Bethe ansatz equation &.tr relevantN;. For example, for =0, s =1,

N — N1, N; — N2, N> (see (2.6)) denote the number of; equal to 1, 2, 3 in the set
{y1, ..., vy} respectively. Moreover, the function

Thw =[1]-[2]-[3] (A4)
coincides with Sutherland’s solution [Su] on supersymmetric/ model presented in [EK]
in the limit ¢ — 1, except for the overall scalar factor, after some redefinition.

Appendix B. On the expressions related to contravariant representations

In the main text, we have treated mainly the expressions related to covariant representations.
For contravariant representations, we can also play a similar game. We often mark the
expression related to contravariant representation with a dot. In the contravariant case, the
relations (2.7)—(2.10) and (2.27) become respectively as follows:

J={-1,-2,...,—r—s5—2 Jy=1{-1,-2,...,—r—1)
Jo={-r—-2—r—-3...,—r—s—2 (B.1)
—r—s—-2<-r—s—-1<---<-1 (B.2)
pla) = {0 fora ¢ J:* (B.3)
1 fora e J_

. O s 1u+r—s+a—-10)0 _,u+r—s+a+2 .
z(as u) = Y, (u) O itr—statD0wtr—sta) fora e J,
i) =y SR TN SO S HG TR forae o (B4)
ary1-j =& — &1 fori<j<r
ary1 = —E1— [l

Arysto—j = 1 — [ for1<j<s (B.5)

whereg; = max{; —s —1,0}; i), <r+1.
The functions (2.6) and (2.11) take the form
PO(u) = [ — w ] i) = Pisiau—2) fora = .—r —5—=2
“ ! Prygi1(u) foraeJ —{—-r—s—2}
(B.6)

if the quantum space is labelled by the contravariant Young superdiagram with shape
= 1h;
Piu+r—s—2) fora=-1

. (B.7)
Pi(u+r—s) foraeJ —{-1}

P =[u—wl™ ) = {

if the quantum space is labelled by the covariant Young superdiagram with ghap@?).
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If the quantum space is labelled by the contravariant Young superdiagram, in contrast
to the covariant case, the parametgr on the left-hand side of the Bethe ansatz equation
(2.6a) will be —1, since the(r + 1)th Kac—Dynkin label takes negative values for the
contravariant Young superdiagram [BMR]. Fer € J and (B.4) with (B.7), the following
relation holds

z(a;u) = (—DNi(—a;s —r —u)| (B.8)

Ltj{m—)—uia),w,‘—)—w, :

Note that this relation reduces to the crossing symmetry [R2}far, if we sets = —1
(see, also [KS1]). Pole freeness of the functifip ,(x) under the Bethe ansatz equation
(2.6a) can be proved in the same way as theorem 2.1.

Appendix C. Example of the non-distinguished simple roots case:
p(1) =1,p(2) =0, p(3) = 1 grading

Let @y anday be the simple roots ofl(1/2) normalized so thatoi|o;) = («2]az) = 0 and
(a1]o) = (az]er) = —1 (see figure C1).

In this case, the sets (2.7) and (B.1) becomme= {2}, J_ = {1,3}; J, = {-2},
J_ = {-1,-3}. The functionz(a: u) =[a], (a € J) has the form

(1] =[u -2 Q1(u+1) 2] = [u]" 01(u+ 1) Qs(u — 2)

- O1(u — 1) - Q1(u — 1) Q2(u)

Py 0o(u—2)
3 =[u]V =2 & C.1
13 =1[u] 02(0) (C.1)

and the functiont(a; u) = @M (a € J) has the form

Oa(u +1) 01(u — 2)Q2(u + 1)
3l=[u-2N=" "7 2| =[]V
—3=le-2] 0x(u — 1) 2= 01() Qa(u — 1)

v Q1(u —2)
[—1]=[u] O (C.2)
Here we assume the quantum spaces are labelled by Young superdiagrams with shapes
i = (1Y) and i = (1Y) respectively; for simplicity, inhomogeneity parametersare set to
0. For example, foi = ¢; u = (2%), (2.15) has the form
Liw=-[1]2[+[1[3]+[2]2]-[2]3]
I O1(u +2)02(u — 1)
01(u —2)Q2(u+1)
Q1(u)Q2(u — 1)
O1(u —2)Q2(u + 1)
N O1(u+2)0>(u — 3)
b o= 2020+ 1
01(u) Q2(u — 3)
O1(u —2)Q2(u +1)

= —[u—-3"[u+1

Hu — 3V [u + 1Y

+u — 1Y

—lu — 1V[u + 11V (C.3)

aj Qz

Figure C1l. Dynkin diagram for the Lie superalgebrd(1|2) corresponding to the non-
distinguished simple roots: deg) = degay) = 1.
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and forx = ¢; u = (1%, (2.15) has the form

~ -3 G - G e
= ey e e D
+[u + 1]Ngi+:j. (C.4)

We note that the functio¥ (1) associated with the contravariant Young superdiagram
=g r=(1Y:
Tru)y=—- -3|+[ -2 |- 1] (C.5)

coincides with Essler and Korepin’s solution [EK] on the supersymmetric/ model in
the limit ¢ — 1 except overall scalar factor after some redefinitioRole freeness of the
functions 7¢(u) and 7¢(u) under the Bethe ansatz equation &).6an be proved in the
same way as theorem 2.1.

Appendix D. Example of non-distinguished simple roots case:
p(1) = p(2) =1, p(3) = 0 grading

Let o1 anday be the simple roots afl(1|2) normalized so thatoi|a;) = —2,(az|a) =0

and (a1]az) = (a2]a;) = 1 (see figure D1). In this case, the sets (2.7) and (B.1) become
Jo={3}, J_ ={1,2}; J, = (-3}, J_ = {—1,—2}. The functionz(a; u) =[a] (a € J)

has the form

O1(u+1) Q1(u —3)02(u)
ll=[u-2N ="~ 2| = [ulV
A=le-2] O1(u— 1) 2|=1u 01(u — 1) Q2(u — 2)

Y Q2(u)
3 =[u]" =" D.1
=0 .-

and the functiont(a; u) = @M (a € J) has the form
02(u—1) O1(u +2)Q2(u — 1)
Bl=[u+2]" =" —2|=[u]"
[ ] Qa(u +1) L) 01(u)Q2(u + 1)
O1(u —2)

—1 =[N = D.2

=1 =1u] 01 (D.2)
Here we assume the quantum spaces are labelled by Young superdiagrams with shapes

i = (1Y) and i = (1%) respectively; for simplicity, inhomogeneity parametersare set to
0.

Qay Qz

Figure D1. Dynkin diagram for the Lie superalgebrd(1|2) corresponding to the non-
distinguished simple roots: deg) = 0, deqap) = 1.

1 This coincidence does not necessarily mean the coincidence of underlying representation of Lie superalgebra
sl(r +1s +1).
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For example, foi = ¢; u = (21), (2.15) has the form

T =[1]2]-[1][3]-[2]3]+[3]3]

Qo(u + 1) Q1(u)02(u+1)
— -3 N 1 N N 1 N
U TR G M i My WO vy Ny
N N Ql(u 4)Q2(u +1)
= 1w+ 1] o3
e — 1V [u + 1Y gzé" + 1; (D.3)
and forx = ¢; u = (12), (2.15) has the form
. -
T2 — QJ REIRFINE M)
rO= oy (12 32 s
gy Lt O1(u + ) +[ ]N 01(u —4)01(u+2)02u — 1)
O1(u Q1(u —2)01(u)Q2(u — 3)
N Ql(u + Z)Qz(u N O1(u—H0ou+1)
~le I ) 0atu — 3) RIS 01(w) Qa(u — 3)
Y Q1w —2Qo(u+1) (D.4)

Q1(u) Q2(u —3)

We note that the functiod ™ («) associated with the contravariant Young superdiagram
with shapei = ¢; o = (1)

T'uw) = =3 |- =2|-[ 1] (D.5)

coincides with Lai’'s solution [L] on supersymmetric— J model presented in [EK] in
the limit ¢ — 1 except overall scalar factor after some redefinitioRole freeness of the
functions 7¢(«) and 7¢(u) under the Bethe ansatz equation &).6an be proved in the
same way as theorem 2.1.

Appendix E. Other representation of 7% and 7,,

For simplicity, we assume the vacuum part is formally trivial. Define the functi¢hs3¢,
A, and B,, by the generating series such that

i Au+k-DX =1-z@LwX)t - A-z¢ +LwXx)?! (E.1)
k=—00

i Bu+l-DX'=A-z¢t+22w0X)---A—zr +s+2,u0)X) (E.2)
[=—o0

i Biu+k—DX*=A+z¢+s+220)X) - A+z0r+2w)X) ! (E.3)
k=—00

Z Au+1-DX'=A+z200+LwX) - A+ z(L u)X). (E.4)
[=—00

1 This coincidence does not necessarily mean the coincidence of underlying representation of Lie superalgebra
sl(r+1s +1).
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Combining these relations, we obtain

min(r+1,a)
T'w= )Y Boylu—DAWw+a—1 (E.5)
=0
min(s+1,m)
Tow) = > Awi—DB@w+m=1. (E.6)

=0

Note that these functiond,, (1) and.A?(u) are analogous to eigenvalue formulae of transfer

matrices in dressed-vacuum form of fusidi!;(slffl) vertex model labelled by Young

diagrams with shape@:!) and(1¢) respectively. We also note that the functidsfgx) and

B,,(u) are analogous to eigenvalue formulae of transfer matrices in dressed-vacuum form
of fusion Uq(slﬁfl) vertex model labelled by Young diagrams with shap&9 and (m*)
respectively.
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